

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#172
H

T
T

P
:

T
h

e
H

yp
er

te
xt

 T
ra

n
sf

er
 P

ro
to

co
l

By Mick Knutson

HTTP: The Hypertext Transfer Protocol

ABOUT HTTP

The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems. HTTP is the
foundation of data communication for the World Wide Web.

Hypertext is a multi-linear set of objects, building a network by using
logical links (the so-called hyperlinks) between the nodes (e.g. text or
words). HTTP is the protocol to exchange or transfer hypertext.
RFC 2616 Hypertext Transfer Protocol:
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Uniform resource identifier (URI) is a string of characters used to identify
a name or a resource.
RFC 1630: Universal Resource Identifiers (URI):
http://tools.ietf.org/html/rfc1630

Uniform resource name (URN) is a uniform resource identifier (URI) that
uses the urn scheme and does not imply availability of the identified
resource. Both URN’s (names) and URL’s (locators) are URI’s, and a
particular URI may be a name and a locator at the same time.

BASIC SYNTAX:

EXAMPLE:
urn:isbn:9781849683166

The URN for ‘Java EE6 Cookbook for Securing, Tuning and Extending
Enterprise applications.’
RFC 1737:
Uniform Resource Names (URN): http://tools.ietf.org/html/rfc1737

Uniform resource locator (URL) is a specific character string that
constitutes a reference to an Internet resource.

BASIC SYNTAX:

EXAMPLE:
http://baselogic.com:80/blog/?param1=value¶m2=value#anchor

RFC 1808:
Relative Uniform Resource Locators (URL): http://tools.ietf.org/html/rfc1808

Request Methods
HTTP defines methods (sometimes referred to as “verbs”) to indicate
the desired action to be performed on the identified resource. What this
resource represents, whether pre-existing data or data that is generated
dynamically, depends on the implementation of the server. Often, the
resource corresponds to a file or the output of an executable residing on
the server.

The HTTP/1.0 specification: section 8 defined the GET, POST and HEAD
methods and the HTTP/1.1 specification: section 9 added 5 new methods:
OPTIONS, PUT, DELETE, TRACE and CONNECT. By being specified in these
documents their semantics are known and can be depended upon. Any
client can use any method that they want and the server can choose to
support any method it wants. If a method is unknown to an intermediate
it will be treated as an un-safe and non-idempotent method. There is no
limit to the number of methods that can be defined and this allows for
future methods to be specified without breaking existing infrastructure.
For example WebDAV (RFC5789) defined 7 new methods and RFC5789
specified the PATCH method.

Method Description
CONNECT This specification reserves the method name CONNECT for use with a

proxy that can dynamically switch to being a tunnel (e.g. SSL tunneling).

DELETE The DELETE method requests that the origin server delete the resource
identified by the Request-URI.

GET The GET method means retrieves whatever information (in the form of an
entity) is identified by the Request-URI.

HEAD The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response.

OPTIONS The OPTIONS method represents a request for information about the
communication options available on the request/response chain identified
by the Request-URI.

POST The POST method is used to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by
the Request-URI in the Request-Line.

PUT The PUT method requests that the enclosed entity be stored under the
supplied Request-URI.

TRACE The TRACE method is used to invoke a remote, application-layer loop-back
of the request message.

RFC 2616-sec9:
HTTP Method definitions: http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Hot
Tip

RFC 2616 (Hypertext Transfer Protocol HTTP/1.1) section 3.2.1:
The HTTP protocol does not place any a priori limit on the length
of a URI. Servers must be able to handle the URI of any resource
they serve, and should be able to handle URIs of unbounded length
if they provide GET-based forms that could generate such URIs. A
server should return 414 (Request-URI Too Long) status if a URI is
longer than the server can handle (see section 10.4.15).

URI Length Limits

Implementation Limit
Firefox Unlimited, although instability occurs with URLs reaching

around 65,000 characters.

Safari Unlimited.

Internet Explorer v6 - v7 Maximum length of a URL in Internet Explorer is 2,083
characters, with no more than 2,048 characters in the path
portion of the URL.

CONTENTS INCLUDE:

❱ About HTTP

❱ Request methods

❱ Header fields

❱ MIME types

❱ Status code and Reason Phrase

❱ Hot Tips... and More!

http://www.dzone.com
http://www.refcardz.com
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/rfc1630
http://tools.ietf.org/html/rfc1737
http://tools.ietf.org/html/rfc1808
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.answerhub.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

2 HTTP: The Hypertext Transfer Protocol

DZone, Inc. | www.dzone.com

Internet Explorer v8+ Maximum length of a URL in Internet Explorer is 4,095
characters, with no more than 2,048 characters in the path
portion of the URL. Maximum mailto: length is 500 to 512
characters long.

Sitemap Protocol <loc> URL of the page. This URL must begin with the protocol
(such as http) and end with a trailing slash, if your web server
requires it. This value must be less than 2,048 characters.

GoogleBot crawler Google will index URLs up to 2047 characters in length.

Google search results
page(SERP)

Google will index URLs up to 2047 characters in length.

Google search results
page(SERP)

Google index-able links that will work when clicked in the
SERP's is ~1855 characters in length.

Hot
Tip

RFC 3986: Uniform Resource Identifier (URI) section 3.2.2:
URI producers should use names that conform to the DNS syntax,
even when use of DNS is not immediately apparent, and should limit
these names to no more than 255 characters in length.

Request Message
The request message consists of the following:

The request line and headers must all end with <CR><LF> (that is, a
carriage return character followed by a line feed character (\r\n)). The
empty line must consist of only <CR><LF> and no other whitespace. In the
HTTP/1.1 protocol, all headers except Host are optional.

A request line containing only the path name is accepted by servers to
maintain compatibility with HTTP clients before the HTTP/1.0 specification
in RFC1945.
RFC 2616-sec5:
HTTP Request: http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

Response Message
The response message consists of the following:

The Status-Line and headers must all end with <CR><LF> (a carriage return
followed by a line feed). The empty line must consist of only <CR><LF> and
no other whitespace.
RFC 2616-sec6:
HTTP Response: http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Status Code and Reason Phrase
The Status-Code element is a 3-digit integer result code of the attempt to
understand and satisfy the request. The Reason-Phrase is intended to give
a short textual description of the Status-Code. The Status-Code is intended
for use by automata and the Reason-Phrase is intended for the human
user. The client is not required to examine or display the Reason- Phrase.
The first digit of the Status-Code defines the class of response. The last
two digits do not have any categorization role. There are 5 values for the
first digit:

Group Description
Informational
1xx

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request.

Successful
2xx

This class of status code indicates that the client's request was
successfully received, understood, and accepted.

Redirection
3xx

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request.

Client Error
4xx

The 4xx class of status code is intended for cases in which the client
seems to have erred.

Server Error
5xx

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of performing
the request.

Common Status Codes

Status Code Description
200 RFC-2616 Section 10.2.1: OK

301 RFC-2616 Section 10.3.2: Moved Permanently

304 RFC-2616 Section 10.3.5: Not Modified

307 RFC-2616 Section 10.3.8: Temporary Redirect

400 RFC-2616 Section 10.4.1: Bad Request

401 RFC-2616 Section 10.4.2: Unauthorized

403 RFC-2616 Section 10.4.4: Forbidden

404 RFC-2616 Section 10.4.5: Not Found

405 RFC-2616 Section 10.4.6: Method Not Allowed

408 RFC-2616 Section 10.4.9: Request Time-out

414 RFC-2616 Section 10.4.15: Request-URI Too Large

500 RFC-2616 Section 10.5.1: Internal Server Error

RFC 2616-sec10 HTTP Status Code Definitions:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Header Fields
HTTP header fields are components of the message header of requests
and responses in the Hypertext Transfer Protocol (HTTP). They define the
operating parameters of an HTTP transaction.

The header fields are transmitted after the request or response line, the first
line of a message. Header fields are colon-separated name-value pairs in
clear-text string format, terminated by a carriage return (CR) and line feed
(LF) character sequence. The end of the header fields is indicated by an
empty field, resulting in the transmission of two consecutive CR-LF pairs.
Long lines can be folded into multiple lines; continuation lines are indicated
by presence of space (SP) or horizontal tab (HT) as first character on the
next line. A few fields can also contain comments (i.e. in. User-Agent,
Server, Via fields), which can be ignored by software.

Request Headers

Field Description Example
Accept Content-Types that are acceptable. Accept: text/plain

Accept-Charset Character sets that are acceptable Accept-Charset: utf-8

Accept-Encoding Acceptable encodings. See HTTP
compression.

Accept-Encoding: gzip,
deflate

Accept-
Language

Acceptable languages for response. Accept-Language: en-US

Accept-Datetime Acceptable version in time. Accept-Datetime: Tue, 19
Jun 2012 10:10:10 GMT

Authorization Authentication credentials for HTTP
authentication.

Authorization: Basic
bWljazpzZWNyZXQga2V5

Cache-Control Used to specify directives that MUST
be obeyed by all caching mechanisms
along the request/response chain.

Cache-Control: no-cache

Connection What type of connection the user-
agent would prefer.

Connection: keep-alive

Cookie an HTTP cookie previously sent by
the server with Set-Cookie header.

Cookie: $Version=1;
Skin=new;

Content-Length The length of the request body in
octets (8-bit bytes).

Content-Length: 348

Content-Type The MIME type of the body of the
request (used with POST and PUT
requests).

Content-Type: application/
x-www-form-urlencoded

Date The date and time that the message
was sent.

Date: Tue, 19 Jun 2012
10:10:10 GMT

Expect Indicates that particular server
behaviors are required by the client.

Expect: 100-continue

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

3 HTTP: The Hypertext Transfer Protocol

DZone, Inc. | www.dzone.com

Field Description Example
From The email address of the user making

the request.
From: user@example.com

Host The domain name of the server
(for virtual hosting), and the TCP
port number on which the server is
listening. The port number may be
omitted if the port is the standard
port for the service requested.
Mandatory since HTTP/1.1.

Host: baselogic.com:80
Host: baselogic.com

If-Match Only perform the action if the client
supplied entity matches the same
entity on the server. This is mainly
for methods like PUT to only update
a resource if it has not been modified
since the user last updated it.

If-Match:
"bWljazpzZWNyZXQga2V5"

If-Modified-
Since

Allows a 304 Not Modified to be
returned if content is unchanged.

If-Modified-Since: Tue, 19
Jun 2012 10:10:10 GMT

If-None-Match Allows a 304 Not Modified to be
returned if content is unchanged.

If-None-Match:
"bWljazpzZWNyZXQga2V5"

If-Range If the entity is unchanged, send
me the part(s) that I am missing;
otherwise, send me the entire new
entity.

If-Range:
"bWljazpzZWNyZXQga2V5"

If-Unmodified-
Since

Only send the response if the entity
has not been modified since a
specific time.

If-Unmodified-Since: Tue,
19 Jun 2012 10:10:10 GMT

Max-Forwards Limit the number of times the
message can be forwarded through
proxies or gateways.

Max-Forwards: 10

Pragma Implementation-specific headers that
may have various effects anywhere
along the request-response chain.

Pragma: no-cache

Proxy-
Authorization

Authorization credentials for
connecting to a proxy.

Proxy-Authorization: Basic
bWljazpzZWNyZXQga2V5

Range Request only part of an entity. Bytes
are numbered from 0.

Range: bytes=500-999

Referer This is the address of the previous
web page from which a link to
the currently requested page was
followed. (The word “referrer” is
misspelled in the RFC as well as in
most implementations.)

Referer: http://baselogic.
com/

TE The transfer encodings the user agent
is willing to accept: the same values
as for the response header TE can be
used, plus the "trailers" value (related
to the "chunked" transfer method) to
notify the server it expects to receive
additional headers (the trailers) after
the last, zero-sized, chunk.

TE: trailers, deflate

User-Agent The user agent string of the user
agent

User-Agent: Mozilla/5.0
(X11; Linux x86_64;
rv:12.0) Gecko/20100101
Firefox/12.0

Response headers

Field Description Example
Access-Control-
Allow-Origin

Specifying which web sites can
participate in cross-origin resource
sharing

Access-Control-Allow-
Origin: *

Accept-Ranges What partial content range types
this server supports

Accept-Ranges: bytes

Age The age the object has been in a
proxy cache in seconds

Age: 12

Allow Valid actions for a specified
resource. To be used for a 405
Method not allowed

Allow: GET, HEAD

Cache-Control Tells all caching mechanisms from
server to client whether they may
cache this object. It is measured in
seconds

Cache-Control: max-
age=3600

Connection Options that are desired for the
connection

Connection: close

Content-Encoding The type of encoding used on the
data. See HTTP compression.

Content-Encoding: gzip

Content-
Language

The language the content is in. Content-Language: fr

Field Description Example
Content-Length The length of the response body in

octets (8-bit bytes)
Content-Length: 348

Content-Location An alternate location for the
returned data

Content-Location: /index.
htm

Content-Range Where in a full body message this
partial message belongs

Content-Range: bytes
21010-47021/47022

Content-Type The MIME type of this content Content-Type: text/html;
charset=utf-8

Date The date and time that the message
was sent

Date: Tue, 19 Jun 2012
10:10:10 GMT

ETag An identifier for a specific version of
a resource, often a message digest

ETag:
"bWljazpzZWNyZXQga2V5"

Expires Gives the date/time after which the
response is considered stale

Expires: Date: Tue, 19 Jun
2012 10:10:10 GMT

Last-Modified The last modified date for the
requested object, in RFC 2822
format

Last-Modified: Date: Tue,
19 Jun 2012 10:10:10 GMT

Link Used to express a typed relationship
with another resource, where the
relation type is defined by RFC 5988

Link: </feed>;
rel="alternate"

Location Used in redirection, or when a new
resource has been created.

Location: http://www.
w3.org/pub/WWW/People.
html

Pragma Implementation-specific headers
that may have various effects
anywhere along the request-
response chain.

Pragma: no-cache

Proxy-
Authenticate

Request authentication to access
the proxy.

Proxy-Authenticate: Basic

Refresh Used in redirection, or when a new
resource has been created. This
refresh redirects after 5 seconds.
This is a proprietary, non-standard
header extension introduced by
Netscape and supported by most
web browsers.

Refresh: 5; url=http://
baselogic.com/index.html

Retry-After If an entity is temporarily
unavailable, this instructs the client
to try again after a specified period
of time (seconds).

Retry-After: 120

Server A name for the server Server: Apache/2.4 (Unix)

Set-Cookie Sets an HTTP Cookie Set-Cookie:
UserID=JaneSmith; Max-
Age=3600; Version=1

Strict-Transfer-
Security

A HSTS Policy informing the HTTP
client how long to cache the HTTPS
only policy and whether this applies
to subdomains.

Strict-Transfer-Security:
max-age=16070400;
includeSubDomains

Transfer-Encoding The form of encoding used to safely
transfer the entity to the user.
Currently defined methods are:
chunked, compress, deflate, gzip,
identity.

Transfer-Encoding:
chunked

Via Informs the client of proxies through
which the response was sent.

Via: 1.0 mick, 1.1 baselogic.
com (Apache/2.4)

Warning A general warning about possible
problems with the entity body.

A general warning about
possible problems with the
entity body.

WWW-
Authenticate

Indicates the authentication scheme
that should be used to access the
requested entity.

WWW-Authenticate: Basic

RFC 2616-sec14:
Header Field Definitions: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

MIME Types
An Internet media type is a two-part identifier for file formats on the
Internet. The identifiers were originally defined in RFC 2046 for use in email
sent through SMTP, but their use has expanded to other protocols such as
HTTP. These types were called MIME types, and are sometimes referred to
as Content-types, after the name of a header in several protocols whose
value is such a type.

A media type is composed of two or more parts: A type, a subtype, and
zero or more optional parameters. For example, subtypes of text have an
optional charset parameter that can be included to indicate the character
encoding (e.g. text/html; charset=UTF-8).

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

4 HTTP: The Hypertext Transfer Protocol

DZone, Inc. | www.dzone.com

Common application MIME Types

Type Description
application/atom+xml Atom Feeds

application/ecmascript ECMAScript/JavaScript; Defined in RFC 4329 (equivalent to
application/javascript but with stricter processing rules)

application/EDI-X12 EDI X12 data; Defined in RFC 1767

application/EDIFACT EDI EDIFACT data; Defined in RFC 1767

application/json JavaScript Object Notation JSON; Defined in RFC 4627

application/javascript ECMAScript/JavaScript; Defined in RFC 4329 (equivalent to
application/ecmascript but with looser processing rules) It
is not accepted in IE 8 or earlier - text/javascript is accepted
but it is defined as obsolete in RFC 4329. The "type" attribute
of the <script> tag in HTML5 is optional and in practice
omitting the media type of JavaScript programs is the
most interoperable solution since all browsers have always
assumed the correct default even before HTML5.

application/octet-
stream

Arbitrary binary data. Generally speaking this type identifies
files that are not associated with a specific application.
Contrary to past assumptions by software packages such as
Apache this is not a type that should be applied to unknown
files. In such a case, a server or application should not
indicate a content type, as it may be incorrect, but rather,
should omit the type in order to allow the recipient to guess
the type.

application/ogg Ogg, a multimedia bitstream container format; Defined in
RFC 5334

application/pdf Portable Document Format, PDF has been in use for
document exchange on the Internet since 1993; Defined in
RFC 3778

application/postscript PostScript; Defined in RFC 2046

application/rdf+xml Resource Description Framework; Defined by RFC 3870

application/rss+xml RSS feeds

application/soap+xml SOAP; Defined by RFC 3902

application/font-woff Web Open Font Format; (candidate recommendation; use
application/x-font-woff until standard is official)

application/xhtml+xml XHTML; Defined by RFC 3236

application/xml-dtd Document Type Definition (DTD) files; Defined by RFC 3023

application/xop+xml XML-binary Optimized Packaging (XOP)

application/zip ZIP archive files; Registered

application/gzip Gzip, Defined in RFC 6713

Common multipart MIME Types

Type Description
multipart/mixed MIME Email; Defined in RFC 2045 and RFC 2046

multipart/alternative MIME Email; Defined in RFC 2045 and RFC 2046

multipart/related MIME Email; Defined in RFC 2387 and used by MHTML (HTML
mail)

multipart/form-data MIME Webform; Defined in RFC 2388

multipart/signed Defined in RFC 1847

multipart/encrypted Defined in RFC 1847

Common text MIME Types

Type Description
text/cmd commands; subtype resident in Gecko browsers like Firefox

3.5

text/css Cascading Style Sheets; Defined in RFC 2318

text/csv Comma-separated values; Defined in RFC 4180

text/html HTML; Defined in RFC 2854

text/javascript (Obsolete) JavaScript; Defined in and obsoleted by RFC 4329 in order
to discourage its usage in favor of application/javascript.
However, text/javascript is allowed in HTML 4 and 5 and,
unlike application/javascript, has cross-browser support.
The "type" attribute of the <script> tag in HTML5 is optional
and there is no need to use it at all since all browsers have
always assumed the correct default (even in HTML 4 where
it was required by the specification).

text/plain Textual data; Defined in RFC 2046 and RFC 3676

Type Description
text/vcard vCard (contact information); Defined in RFC 6350

text/xml Extensible Markup Language; Defined in RFC 3023

Cookies
A cookie, also known as an HTTP cookie, web cookie, or browser cookie, is
usually a small piece of data sent from a website and stored in a user’s web
browser while a user is browsing a website.
SERVER SETTING COOKIES IN RESPONSE:

Set-Cookie: name=value
Set-Cookie: name2=value2; Expires=Tue, 26 Jun 2012 19:19:47 GMT

BROWSER SENDING COOKIES TO SERVER IN REQUEST:

Cookie: name=value; name2=value2

Data URI’s
Data URL scheme can be useful for embedding images into HTML/CSS/JS
to save on HTTP requests instead of referencing remote files.

STANDARD TAG:

<img width=”99” height=”99” alt=”BASE Logic, Inc. logo” src=”http://baselogic.
com/images/BLiNC_logo.png” />

DATA URI IMAGE IN TAG:

<img width=”99” height=”99” alt=”BASE Logic, Inc. logo” src=”
fNwfjZ0frl3/zy7///

Avoiding caching

If a web server responds with Cache-Control: no-cache then a web browser
or other caching system must not use the response to satisfy subsequent
responses without first checking with the originating server. This header
field is part of HTTP version 1.1, and is ignored by some caches and
browsers. It may be simulated by setting the Expires HTTP version 1.0
header field value to a time earlier than the response time.

The request that a resource should not be cached is no guarantee that it
will not be written to disk. In particular, the HTTP/1.1 definition draws a
distinction between history stores and caches. If the user navigates back
to a previous page a browser may still show you a page that has been
stored on disk in the history store. This is correct behavior according to the
specification. Many user agents show different behavior in loading pages
from the history store or cache depending on whether the protocol is HTTP
or HTTPS. The header field Cache-Control: no-store is intended to instruct
a browser application to make a best effort not to write it to disk.
The Pragma: no-cache header field is an HTTP/1.0 header intended for
use in requests. It is a means for the browser to tell the server and any
intermediate caches that it wants a fresh version of the resource, not
for the server to tell the browser not to cache the resource. Some user
agents do pay attention to this header in responses, but the HTTP/1.1 RFC
specifically warns against relying on this behavior.

RFC 2616-sec13: Caching in HTTP:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

HTTP Conditional GET
A conditional GET is an HTTP GET request that returns an HTTP 304
response (versus HTTP 200). An HTTP 304 response indicates that the
resource has not been modified since the previous GET request and
the resource will not be returned to the requesting client as part of the
response.

BASIC SYNTAX:

[Last-Modified / If-Modified-Since]
[ETag / If-None-Match]

CLIENT REQUEST:

[MickKnutson]$ curl --silent --head --header ‘If-Modified-Since: Tue, 19 Jun
2012 10:10:10 GMT’ http://baselogic.com/images/BLiNC_logo.png

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

5 HTTP: The Hypertext Transfer Protocol

DZone, Inc. | www.dzone.com

SERVER RESPONSE HTTP 304:

HTTP/1.1 304 Not Modified
Date: Tue, 26 Jun 2012 19:13:29 GMT
Server: Apache/2.2.21 (Unix)
Connection: close
Expires: Wed, 27 Jun 2012 19:13:29 GMT
Cache-Control: max-age=86400

HTTP Authentication
Transfer Layer Security (TLS / SSL)

Transfer Layer Security (TLS) and its predecessor, Secure Sockets
Layer (SSL), are cryptographic protocols that provide communication
security over the Internet. TLS and SSL encrypt the segments of network
connections at the Application Layer for the Transfer Layer, using
asymmetric cryptography for key exchange, symmetric encryption for
privacy, and message authentication codes for message integrity.
RFC 5246 Transfer Layer Security (TLS) Protocol v1.2: http://tools.ietf.org/html/
rfc5246

Basic access Authentication (BASIC)
In the context of an HTTP transaction, basic access authentication is a
method for a web browser or other client program to provide a user name
and password when making a request. This is the most basic way of
implementing authentication for a web application and is suitable when
we are accessing the application both using browser and other software
such as scripts and so on. In this mode, when accessed by a browser, the
browser will use its standard dialog to collect the credentials. It is easy
to implement, but the credentials will be transmitted as plain text and
anyone can collect them if we do not have TLS/SSL or some network level
encryption in place.

CLIENT REQUEST (NO AUTHENTICATION):

GET /secured/index.html HTTP/1.1
Host: localhost

SERVER RESPONSE:

HTTP/1.1 401 Authorization Required
Server: Apache
Date: Tue, 26 Jun 2012 19:19:47 GMT
WWW-Authenticate: Basic realm=”Secure Area”
Content-Type: text/html
Content-Length: 311

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd”>
<HTML>
 <HEAD>
 <TITLE>Error</TITLE>
 <META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=ISO-8859-1”>
 </HEAD>
 <BODY><H1>401 Unauthorized.</H1></BODY>
</HTML>

Before transmitting the username and password entered by the user,
the two are concatenated with a colon separating the two values; the
resulting string is Base64 encoded. For example, given a username mick
and password secret key, the string “mick:secret key” will be encoded with
the Base64 algorithm resulting in bWljazpzZWNyZXQga2V5. The Base64-
encoded string is transmitted in the HTTP header and decoded by the
receiver, resulting in the decoded colon-separated username and password
String. Encoding the username and password with the Base64 makes
them unreadable visually, but they are easily decoded. Confidentiality is not
the intent of the encoding step, rather, the intent is to encode non-HTTP-
compatible characters that a username or password may contain, into
those that are HTTP-compatible.

CLIENT REQUEST “MICK:SECRET KEY” (USER NAME “MICK”, PASSWORD
“SECRET KEY”):

GET /secured/index.html HTTP/1.1
Host: localhost
Authorization: Basic bWljazpzZWNyZXQga2V5

SERVER RESPONSE:

HTTP/1.1 200 OK
Server: Apache
Date: Tue, 26 Jun 2012 19:19:47 GMT
Content-Type: text/html
Content-Length: 10476

Digest access authentication (DIGEST)

This method is similar to the BASIC authentication method, but instead of
the password a digest of the password is transmitted.
Digest communication starts with a client that requests a resource from a
web server. If the resource is secured with Digest Authentication, the server
will respond with the http status code 401, which means Unauthorized to
access this resource.

CLIENT REQUEST (NO AUTHENTICATION):

GET /dir/index.html HTTP/1.0
Host: localhost

In the response from the initial request, the server indicates in the HTTP
header with which mechanism the resource is secured.
SERVER RESPONSE:

HTTP/1.0 401 Unauthorized
Server: Apache
Date: Tue, 26 Jun 2012 19:19:47 GMT
WWW-Authenticate: Digest realm=”baselogic.com”,
 qop=”auth”,
 nonce=”dcd98b7102dd2f0e8b11d0f600bfb0c093”,
 opaque=”5ccc069c403ebaf9f0171e9517f40e41”
Content-Type: text/html
Content-Length: 311

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
 “http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd”>
<HTML>
 <HEAD>
 <TITLE>Error</TITLE>
 <META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=ISO-8859-1”>
 </HEAD>
 <BODY><H1>401 Unauthorized.</H1></BODY>
</HTML>

CLIENT REQUEST (USERNAME “MICK”, PASSWORD “SECRET KEY”):

GET /secured/index.html HTTP/1.0
Host: localhost
Authorization: Digest username=”mick”,
 realm=”baselogic.com”,
 nonce=”dcd98b7102dd2f0e8b11d0f600bfb0c093”,
 uri=”/secured/index.html”,
 qop=auth,
 nc=00000001,
 cnonce=”0a4f113b”,
 response=”35f308904a9a9623498f358d1cb10afd”

SERVER RESPONSE:

HTTP/1.0 200 OK
Server: Apache
Date: Tue, 26 Jun 2012 20:19:47 GMT
Content-Type: text/html
Content-Length: 7984

You should notice the term Digest in the response which indicates that the
resource requested by the client is secured using Digest Authentication.
The server also indicates the type of Digest Authentication algorithm used
by the client with Quality Of Protection (QOP) and the nonce string, which is
a Base64 encoded timestamp and private hash generated by the server.

String nonce = Base64.encode(new Timestamp() : “Private MD5 Hash”)

The private hash is created by the server, and the Base64 encoding allows
for decoding of the timestamp and private hash, even though the private
MD5 hash is a one-way encryption.

An internet browser responds to
this by presenting the user a dialog,
in this dialog the user is able to
enter a username and password
for credentials. The dialog does not
show the warning about transmitting
the credentials in clear text as with a
Basic Authentication secured site.

The response is generated by several
digest properties sent from the client, with the addition to an HA1 and HA2
value concatenated together, then MD5 hash encrypted. The algorithm is
the following:

Response = MD5(“HA1:\
 nonce:\
 nc:\
 cnonce:\
 qop:\
 HA2”)

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 HTTP: The Hypertext Transfer Protocol

Version 1.0

$7
.9

5

RECOMMENDED BOOKABOUT THE AUTHOR

The HA1 hash is the username, realm, and password separated by colons.

HA1 = MD5(“mick:baselogic.com:secret key”)

The MD5 hash for the HA1 is: 935f1e7b1582ffd6e05e7dc8e949ac6f

The HA2 hash is the initial HTTP GET request made to the server.

HA2 = MD5(“GET:/secured/index.html”)

The MD5 hash for the HA2 is: cc21ab6caf04c32228f0250c9eb48705

The final response MD5 hash algorithm would look like this:

Response = MD5(“935f1e7b1582ffd6e05e7dc8e949ac6f:\
 dcd98b7102dd2f0e8b11d0f600bfb0c093:\
 00000001:0a4f113b:auth:\
 cc21ab6caf04c32228f0250c9eb48705”)

This would result in 35f308904a9a9623498f358d1cb10afd which is the
value for the response to the client sent to the server for authentication.

Listing: Submitting DIGEST authentication credentials.

Form-Based Authentication (FORM)

In this mode, we can use our own form to collect the username and
password. It is very flexible in terms of implementation and how we ask
for the username and password, but requires extra work for implementing
the forms.This method suffers from the same security risk as the BASIC
method because the credentials are transmitted as plain text.

This is however, the most user friendly type of authentication as it allows
site owners to control the look-and-feel over the user experience during
site navigation.

<form method=”post” action=”/secured/login”>
 <input type=”text” name=”username” required>
 <input type=”password” name=”password” required>
 <input type=”submit” value=”Login”>
</form>

ADDITIONAL RESOURCES

BASE Logic, Inc: http://baselogic.com

Tcp: http://en.wikipedia.org/wiki/Transmission_Control_Protocol

RFC 793 TCP Connection states: http://tools.ietf.org/html/rfc793

RFC 2397 The “data” URL scheme: http://tools.ietf.org/html/rfc2397

RFC 2459 Internet X.509 Public Key Infrastructure: http://tools.ietf.org/html/
rfc2459

RFC 4918: HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV):
http://tools.ietf.org/html/rfc4918

cURL: http://en.wikipedia.org/wiki/CURL

Mick Knutson, with nearly two decades of experience
working in the IT industry in various roles as
Enterprise technology consultant, Java Architect,
project leader, Engineer, Designer and Developer, has
gained a wide variety of experience in disciplines
including Java EE, Web Services, Mobile Computing,
and Enterprise Integration Solutions. Mr. Knutson

has led training courses and book publishing engagements, authored
technical white papers, and presented at seminars worldwide. As an
active blogger and Tweeter, Mr. Knutson has also been inducted in
the prestigious DZone.com “Most Valuable Blogger” (MVB) group, and
can be followed at http://baselogic.com, http://dzone.com/users/
mickknutson and http://twitter.com/mickknutson.

Java EE6 Cookbook for securing, tuning, and
extending enterprise applications. Java Platform,
Enterprise Edition is a widely used platform
for enterprise server programming in the Java
programming language. This book covers exciting
recipes on securing, tuning and extending enterprise
applications using a Java EE 6 implementation. Java
Platform, Enterprise Edition is a widely used platform
for enterprise server programming in the Java
programming language.

Clean Code
Object-Oriented JS
JSON
Resin and Cloud

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.baselogic.com/blog/
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc2397
http://tools.ietf.org/html/rfc2459
http://tools.ietf.org/html/rfc2459
http://tools.ietf.org/html/rfc4918
http://en.wikipedia.org/wiki/CURL
http://www.dzone.com/links/index.html
http://www.baselogic.com/blog/
http://dzone.com/users/mickknutson
http://dzone.com/users/mickknutson
http://twitter.com/mickknutson
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

